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A B S T R A C T   

The stochastic nature of electric vehicles (EVs) has made predicting and ultimately controlling their integration 
on a large scale a very challenging task. This work proposes a two-layer optimization framework based on the 
Stackelberg leader and follower to manage a tri-level energy management strategy to coordinate EVs charging. 
The first layer incorporates an aggregator that collects the energy requirements of all EVs in a decentralized 
manner, and sends them to an attached microgrid, which constitutes the second layer of the proposed scheme, for 
further processing. Then, the microgrid runs a lower-level energy optimization problem in a centralized manner 
based on the inputs from its aggregators downstream and a system operator upstream, which operates in the 
third level. Simultaneously, the coordination between the system operator and its attached microgrids is 
formulated as an upper-level energy optimization problem. The work incorporates the dynamics of the energy 
system by modeling practical economic, technical, and operational variables. The formulated problem is solved 
via mixed-integer quadratic programming (MIQP). The results show that the proposed strategy has successfully 
influenced the charging requirements of EVs due to the dynamic energy price signals issued following the sys-
tem’s timely operation. In addition, the results demonstrated an optimal energy exchange to support optimal 
operation and reduce overall costs.   

1. Introduction 

Major restructuring of industries that significantly contribute to 
global GHG emissions is continually in progress. Plug-in Electric Vehi-
cles (EVs) are seen as key tools in the significant restructuring of major 
contributors of emissions, the electric power industry, and the trans-
portation sector [1]. Large-scale penetration of EVs is considered as a 
major challenge, as their uncoordinated charging will lead to various 
technical and operational power system problems such as increased 
peak loads and losses, excessive voltage drops, and overloaded feeders 
[2]. Research has been intensified in the last decade on energy man-
agement and control to properly manage large-scale integration of EVs. 
Recent literature has studied the impact of uncontrolled charging of a 
large population of EVs [3]. The authors in [1] provide a study on 
integrating a one-million EVs into the VACAR sub-region of the South-
east Electric Reliability Council (SERC). The study considered various 
charging and discharging scenarios with different EV sizes, energy re-
quirements, and time of connectivity and concluded that a typical 

residential power distribution feeder will not withstand charging EVs for 
long hours without causing severe overloadings and possible outages. In 
[2], the authors present one of the earliest research studies on the grid’s 
impact of uncoordinated EVs integration, where they investigated the 
impact of integrating 7.5 million EVs on the technical, economic and 
operational aspects of the power grid. They concluded that unless 
large-scale EVs loads are managed to be delayed from peak hours to 
off-peak hours, a substantial increase in energy prices is inevitable in 
several areas within the US interconnected network. In [3], the authors 
tested the impact of the uncoordinated large-scale adoption of EVs on 
the hourly operation of the power distribution grid. Specifically, the 
authors simulated different testing scenarios to dynamically model the 
hourly impact of EVs integration considering different EVs types and 
energy needs. According to their results, uncoordinated large-scale 
integration of EVs will violate the system’s voltage limits and lead to 
overloading conditions and increased energy prices for all consumers 
connected to the distribution feeder. Additionally, the study introduced 
in [4] concluded that simple charging strategies yield peak demands in 
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several time slots of the day, which require significant investment to 
upgrade the system’s overall generation and transmission capacities. 
Therefore, proper energy management is needed to deal with the un-
certainty of the large-scale integration of EVs. 

Several methodologies have been proposed recently to deal with the 
challenging task of accounting EVs load into the already-congested 
power grid. The authors in [5] proposed a two-step framework to co-
ordinate the EVs charging following price-based coordination based on 
linear programming. In [6], the authors proposed a methodology that 
accounts for the design of grid-interfaced EV-charging system incorpo-
rating stochastic renewable energy sources and storage units into the 
electrical infrastructure. The authors utilized a linear 
programming-based framework to reduce the system’s lifecycle cost. 
Regardless, efforts are still needed to cover the research gap that in-
vestigates the impact of large-scale integration of EVs on both economic 
and technical aspects. 

Unintended periods of simultaneous charging at multiple charging 
stations without proper coordination of multiple aggregators can lead to 
a severe negative impact on the grid operation. However, most of the 
proposed methodologies ignored important factors that resemble real-
istic operations and dynamics of an interconnected energy system. The 
authors in [7] proposed a hierarchical strategy that prioritizes EVs 
charging based on available demand using the entropy weight method. 
However, the authors neglected the fact that demands must be met if 
drivers plugged their EVs into the grid. The authors in [8] proposed an 
aggregator-based hierarchical control mechanism for second-order fre-
quency control using optimal EVs scheduling. In the proposed solution, 
the EV planning considered meeting energy needs with frequent bidi-
rectional energy transfers to the grid. Yet, the solution neglected the 
dynamics of the interconnected system and the variations of the gen-
eration systems, supply and demand levels, and energy exchange within 
the interconnected system. The authors in [9] proposed mixed-integer 
linear programming to solve community energy management system 
to reduce operational costs with adjustable generating units on sites and 
energy trading. However, important factors such as the scarcity cost of 
generation units, operational costs associated with energy exchange 
between microgrids, carbon emissions and renewable portfolio standard 
(RPS) were not considered. Other studies considered market dynamics 
in their proposed hierarchical energy management structures such as 
game theory [10], and model predictive control [11] but yet neglected 
important variables such as energy exchange, thermal runaway (TR) 
loadings, carbon emissions, RPS and costs associated with energy ex-
change to be reflected on the actual EV charging price. Additionally, 
hierarchical coordination was developed to solve general energy man-
agement problems following either price-based or schedule-based co-
ordination, whereas decentralized charging mechanisms are mainly 
built on the price-based concept. Limited research has considered any 
form of dynamic charging, which should be the main cornerstone in 
such problems. The main contributions of the proposed work in this 
manuscript are as follows:  

1 A two-layer (upper and lower) quadratic optimization formulation 
considering the Stackelberg model is proposed to incorporate timely 
decisions for three layers of the control scheme. This scheme reflects 
continuously updated real-time energy price signals that influence 
consumer behavior, while distinguishing between EVs and non-EVs 
loads for fair pricing allocations.  

2 To solve the proposed methodology, this work develops mixed- 
integer quadratic programming (MIQP) that consider important 
variable for realistic modeling of energy market operations such as 
RPS standards and carbon credits.  

3 To the best of our knowledge, the previously proposed literature 
considered either assumed or used Time-of-Use (ToU) rates as energy 
pricing schemes in their modeling. Such assumptions may constitute 
a serious flaw as the impact of a sudden large EVs population may 
influence the price signal and drive it higher than expected, which is 

not properly captured if ToU or artificial rates are utilized. This work 
incorporates dynamic energy pricing that follows changes in real- 
time demands and level of supply.  

4 In addition to point 3, this work integrates practical variables that 
are essential to model the dynamic and realistic operation of the 
energy grid. To the best of our knowledge, most of these variables are 
neglected in previous literature. Such variables include the 
willingness-to-pay factor (WTP) of consumers, wheeling charge that 
resembles the real cost of exchanging energy in an interconnected 
system, social welfare of the EV’s owners, RPS, carbon credits and 
emission rates, limits and capacity of energy of the transmission line 
between microgrids, elasticity price as a result of energy levels 
changes, and scarcity rent of the generation units. 

This paper is arranged as follows: Section 2 illustrates the proposed 
tri-level hierarchy; Section 3 presents the problem formulation for the 
two layers of energy optimization; Section 4 presents case studies and 
results; Section 5 concludes this work with final remarks. 

2. The proposed tri-level hierarchical energy management 
methodology 

2.1. The inverse-demand curve 

Consumers in energy markets are expected to react naturally to price 
fluctuations that influence their decision to use services when they need 
them. This behavior is well characterized by the inverse demand curve 
(IDC) that determines energy prices at all generation (supply) and de-
mand (load) levels of the electrical system. Additionally, the IDC rep-
resents the consumer’s willingness to pay extra to get power within a 
specific time period. This is known as the WTP coefficient and indicates 
the marginal utility consumers receive if they use additional energy 
services. Following a well-known rule of microeconomics, these mar-
ginal utilities are estimated using the magnitude of utility required for 
the total amount of products and energy services available during a 
given period of our study. Logically, consumers can extend their mar-
ginal utility through energy consumption until the marginal utility 
equals the energy market price. Then at specific points, it would be 
uneconomical to continue utilizing the energy. This stems from a basic 
microeconomic fact that when supply is limited, the cost of a product 
gradually increases. Such total costs, also called marginal costs, reflect 
other factors related to market conditions. Factors such as power gen-
eration levels, fuel supply, operational constraint violations, RPS, and 
CO2 limits are included in this work. These variables affect the marginal 
cost, especially in the short term, that characterizes the power grid’s 
daily and weekly operation. 

On one hand, EVs owners are considered regular consumers of the 
electrical energy needed to charge their vehicles on a daily basis. 
However, the different energy utilization patterns are attributed to in-
dividual EV owners. Such patterns are characterized by several factors 
that are determined only by the owner of the EV, such as driving pat-
terns, personal habits (e.g., travel, and outdoor activities), work, vehicle 
type, etc. Therefore, each EV would require a certain level of energy 
consumption in a decentralized manner. On the other hand, the power 
production companies are almost heterogeneous regarding the energy’s 
cost structure. Specifically, each generation unit has its own technical 
and operational status that defines its energy output’s price signal. 
Usually, these generation units run under certain circumstances that 
increase their price signal. Such circumstances include generation ca-
pabilities per unit, environmental policies that govern the generation 
process to meet specific emissions standards, and regulations that 
require the utility to incorporate RPS goals, among other factors effec-
tively contributing to determining the level of supply of a power utility. 
Therefore, accurate broadcasting of the energy prices must reflect the 
timely condition of both the supplier (the power utility or system 
operator) and consumer (EVs owners). There is a scarcity of literature to 

T. Aljohani et al.                                                                                                                                                                                                                                



Electric Power Systems Research 226 (2024) 109923

3

A

B

Equilibrium Quan�ty
Increases

Equilibrium 
Price

Increases

Energy Price

Energy Quan�ty

Demand 1 Demand 2

Fig. 1. Illustration of the inverse-demand concept in energy pricing.  

Fig. 2. Schematic illustration of the proposed tri-level scheme.  
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model such a meaningful relationship that is well-captured by the IDC. 
Furthermore, this work sees the IDC as an effective modeling strategy 
that better describes the minute-to-minute modernization of the electric 
network operation, resulting in accurate and reliable energy price sig-
nals considering the large-scale integration of EVs. Therefore, the 
concept of the tri-level hierarchical control framework proposed in this 
work is mainly built on establishing price signals following the avail-
ability of supply levels determined by the IDC curve, as illustrated in 
Fig. 1. 

2.2. Hybrid centralized-decentralized EVs charging coordination 

This work utilizes coordination schemes of both decentralized and 
centralized management paradigms, based on predetermined duties 
allocated to different players in the decision process. Such players 
include aggregators at the station level, microgrid agents, and a system 
operator overseeing the energy grid’s generation and operation capa-
bilities. Specifically, information about the EVs is collected in a decen-
tralized manner from EVs owners (such as the arrival and requested 
departure times, desired level of energy, … etc.). The collected infor-
mation is processed through an aggregator. This aggregator collects all 
connected and request-to-connect EVs’ energy and power requirements 
and sends them to its attached microgrids for further processing. Then, 
the microgrid runs the lower-level energy optimization problem in a 
centralized framework based on inputs from both downstream aggre-
gators and an upstream system operator. The coordination between the 
system operator and its attached microgrids is solved as the upper-level 
energy optimization problem, formulated following the Stackelberg 
leader and follower concept. Moreover, the tri-level problem is then 
modeled based on MIQP, which considers the carbon emissions cap-and- 
trade policies and the RPS requirement from local authorities and other 
economic variables that are essential to the accurate determination of 
energy price signals. Fig. 2 presents a schematic description of the 
proposed tri-level energy management system. 

2.3. The stackelberg model for EVs charging coordination 

The concept of the Stackelberg model is based on multi-period dy-
namic games, where two players sequentially decide their strategic 
moves rather than simultaneously. Typically, the leader starts with the 
first move based on knowledge and anticipation of its follower’s reac-
tion. Once the leader’s move is intact, the follower then makes a stra-
tegic decision in the sequential period of the leader’s first move. Such a 
process could be modeled as a bi-level optimization problem considering 
the sequential trends in issuing decisions. In this work, such strategic 
moves represent the grid’s operation considering large-scale EVs 
charging. Specifically, the system operator will act in this scenario as a 
leader that solves its revenue-maximization optimization model based 
on the knowledge of the operation of its attached microgrids. As fol-
lowers, microgrids make strategic decisions based on their lower-level 
optimization problem information with the EVs station aggregators. 

3. Mathematical formulation of the proposed tri-level 
hierarchical energy management strategy 

3.1. Mathematical formulation of the lower-level (hybrid centralized- 
decentralized EVs charging coordination) 

Suppose that there is a large group of EVs that are looking to charge 
over a multi-period timeslot J = {0, ..., T − 1}. The state of charge 
(SoC) of an EVn that would like to connect to an aggregator j under 
microgrid i is modeled as follows: 

SoCijn(t+ 1) = SoCijn(t) +
ηev

n

Bijn
DEV

ijn (1)  

Where ηev
n symbolize the charging efficiency of EVn such that ηEV

ijn ∈ [0,1], 
Bijn is the EV battery’s energy capacity, and DEV

ijn represents the charging 
power demanded by the nth EV at an aggregator j under a microgrid i,
and is indicated by the kW needs of the vehicle such that: 

DEV
ijn (t) = DEV

ijn (t); t ∈ ℑ (2)  

∑

t∈ℑ
DEV

ijn (t)=
∑

n∈Nt
ijn

Bijn

ηEV
ijn
.
[
SoCdept mx

ijn − SoCa
ijn

]
(3)  

Where SoCa
ijn and SoCdept mx

ijn are the arrival and maximum possible SoC of 
EVn. Bijn is highly dependent on the driving distance, driving speed, EVs’ 
type, and road and traffic conditions. Moreover, the charging power is 
admissible to a charging station with an aggregator j if: 

DEV
ijn,t =

⎧
⎨

⎩

∈
[
− ζ−

ijn, ζ
+
ijn

]
, t ∈ I

= 0, otherwise
(4)  

Where ζ−ijn, ζ
+
ijn are factors that resemble the uniform rate of charging and 

discharging power over time. Additionally, the charging needs of an EV 
must be fully satisfied as follows: 

ηEV
ijn .

∑Tijn − 1

k=0
DEV

ijn (t+ k).Δ + SoCijn(t).Bijn = SoCdept
ijn .Bijn (5) 

Additionally, the capacity of the power distribution transformer 
connected to aggregator j must be within the safe limit so that the 
accumulated charging demands of EVs do not cause overloading: 
∑

n∈Nt
ijn

∑

t∈ℑ
DEV

ijn (t+ k) ≤ Mij.σij(t + k) (6)  

[
SoCdept

ijn − ϑn
]
.Bijn ≤ ηev

n ⋅
∑Tijn(t)− 1

k=0
DEV

ijn (t+ k).Δ+ SoCa
ijn.Bijn ≤ SoCdept

ijn .Bijn (7) 

Let us consider a microgrid i that is connected to a system of 
microgrids and all operating under a unified system operator [12]. Each 
microgrid i has G generation units such that (g ∈ Gi), with each g having 
generation capacity (X g

i ) as well as associated marginal costs (Cg
i ). The 

centralized objective function to be solved at the microgrid i level during 
timeslot t is formulated as follows: 

J = J1 + J2 + J3 + J4 + J5 (8) 

The first objective function, J1, accounts for the integration of the 
area beneath the IDC for the base demand (non-EVs load) on microgrid i, 
denoted DBase

i , given the instantaneous marginal cost C′
i, as follows: 

J1 =

[

C′
i(t+ k).DBase

i (t+ k) −
C′

i(t + k)
2Γi(t + k)

[

DBase
i (t + k)2

−
∑

J∈Ji

∑

g∈Gi

xi(t + k)2
.Δ

]

(9)  

Where Γi is the cumulative capacity of microgrid i in MW, represented as 
the x-axis of the inverse-demand curve. Δ is the number of hours 
considered to normalize the capacity of the generation units. The 
importance of this function is to model the energy price with respect to 
the change of demand of non-EVs loads on microgrids. The second 
objective function, J2, accounts for the integration of EVs load demand 
at the timeslot of interest beneath the IDC, given microgrid i operational 
costs obtained as a result of aggregator j for EV scheduling, as follows: 

J2 =

[

b′
ij(t+ k).DEV

ijn (t+ k) −
b′

ij(t + k)
2Γi(t + k)

⎡

⎣
∑

n∈Nt
ijn

DEV
ijn (t + k)2

⎤

⎦.Δ (10) 

The third objective function J3, accounts for the adds-on prices 
resulting from capacity scarcity exchange between interconnected 
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microgrids i and m. Someone can look at this price as the compensation 
for the capacity remuneration for being available to another market 
participant: 

J3 = [Yg
mi(t)[x

g
mi(t) − X

g
mi(t)]Δ (11) 

The fourth objective function J4 estimates the discharging re-
quirements of the EVs that opt-in to provide their energy to their 
assigned microgrids during the times when the grid faces higher de-
mand, as follows: 

J4 =
∑

ζijn

(
DEV− Disch

ijn (t+ k)
)
.Δ (12) 

The fifth objective functionJ5 is the utility function associated with 
an EVn, connected to an aggregator j under microgrid i, as follows: 

J5 =
∑

n∈Nijn

Uijn

(
DEV

ijn

)
(13)  

Where 

Un
(
DEV

n

)
= U

(
‖ DEV

n ‖1
)
−
∑

t∈ℑ
Vn

(
DEV

n (t)
)

(14)  

Vn(t+ k) = Cextra
ijn (t + k).DEV

ijn (t + k)]+ζijn(t+ k)DEV,disch
ijn (t+ k) (15)  

U
(
‖ DEV

n ‖1
)
= − φ

(
‖ DEV

n ‖1 − Bijn
)2 (16) 

The battery degradation cost is found by the following expression 
[13,14]: 

ζijn(t) = α1
ijn

(
DEV

ijn (t)
)2

+ α2
ijn

(
DEV

ijn (t)
)
+ α3

ijn (17)  

L
(

DEV
ijn , λ

)
= J +

∑

J∈Ji

∑

n∈Nt
ijn

λijn .

[

Bijn −
∑

t∈ℑ
DEV

ijn

]

(18)  

Bijn = ζijn

[
SoCdept mx

ijn − SoCa
ijn

]
(19)  

Bijn = ξijn .

[
SoCdept mx

ijn − SoCa
ijn

]
(20)  

λijn = C
′,∗
ij

(
DBase ∗

ijn

)
+ b

′,∗
ij

(
DEV ∗

ijn

)
− ζ′

ijn

(
DEV,disch ∗

ijn
)

(21)  

λijn ≥ C
′,∗
ij

(
DBase ∗

ijn

)
+ b

′,∗
ij

(
DEV ∗

ijn

)
− ζ′

ijn

(
DEV,disch ∗

ijn
)

(22)  

⎧
⎨

⎩

eq(21), if DEV ∗
ijn > 0

eq(22), if DEV ∗
ijn = 0

(23) 

For a group of EVs such that n ∈ Nt
ijn, the energy cost to meet the 

charging requirements for the nth EV under an aggregator j is formu-
lated as follows: 

J
(

DEV
ijn ,Pr(t)

)
=

∑

t∈ℑ
− ζijn(t).D

EV,disch
ijn (t)+Pr(t).DEV

ijn (t) (24)  

Where Pr(t) indicates the instantaneous charging price per each con-
nected vehicle, and is broadcasted by microgrid i as follows: 

Pr(t) = C∗
ij(t) + b∗

ijn(t) (25) 

Let us denote DEV ∗
ijn as the updated charging requirement for nth EV, 

then the jth aggregator that oversees the charging scheduling aims to 
minimize the per-vehicle charging cost as follows: 

DEV ∗
ijn (Pr(t)) = argmin

DEV
ijn ∈D EV

[
DEV

ijn ,Pr(t)
]

(26) 

Such that: 

C∗
ij(t) =

∑

J∈Ji

DB
ij (t) .

[
C′

ij (t)
]
+ωij(t) (27)  

b∗
ijn(t) =

∑

J∈Ji

∑

n∈Nt
ijn

DEV ∗
ijn (t) .

[
b′

ijn(t)
]
+ κij(t) (28) 

Both ωij(t) and κij(t) represent wheeling charges that resemble the 
cost of exchanging energy during time slot t with interconnected 
microgrids ∈ I, and with nearby stations. It should be noted that the first 
part of the summation in the equation represents the system. The 
charging requirements for a collection of EVs are updated in a decen-
tralized manner. Such requirements depend mainly on arrival and 
requested departure SoC, parking duration, and the grid’s operational 
status that dictates the energy prices based on the IDC curve that re-
sembles the grid’s instantaneous supply and demand levels. Specifically, 
the aggregator receives requests to charge the vehicles for the next 
timeslot. Each aggregator then sends the charging scheduling that in-
cludes the currently connected EVs and the newly introduced requests to 
its upstream microgrid. The associated microgrid then collects the 
updated scheduling of all aggregators beneath its authority and runs its 
centralized optimization problem based on both upstream and down-
stream inputs. Such inputs include other loads on its grid (non-EVs de-
mand), power production from its generation unit and the upstream 
system operator, energy exchange among its nearby microgrids, trans-
former, and lines overloading conditions. After updating its IDC curve, 
each microgrid broadcasts a unique price signal for each of its attached 
aggregators. This price signal is composed of the power production price 
that is jointly determined with the upper layer (the system operator) and 
the marginal operation price that is determined for each aggregator by 
its assigned microgrid, as follows: 

C(0)
ij (t) =

[
C∗

ij(t); t ∈ ℑ
]

(29)  

b(0)
ijn (t) =

[
b∗

ijn(t); t ∈ ℑ
]

(30) 

An iterative, offline, decentralized pricing mechanism, inspired by 
[15], is implemented in this work before the charging timeslot to 
identify the best pricing signal for each EV. Mainly, this mechanism 
considers the best charging requirement decision taken by each EV’s 
owner, which is assumed to be influenced by the updated pricing signal. 
The decentralized mechanism works as following steps:  

1 Initial power production and marginal operation prices, based on 
Eqs. (29) and (30).  

2 Set 

Pr(0)(t) =
[
C(0)

ij (t)+ b(0)
ijn (t); t ∈ ℑ

]
(31)    

3 Set h = 0, ϵ = ϵ0, such that ϵ0 > 0  
4 For ϵ0 > 0, Execute the charging requirement decision DEV (h+1)

ijn 

with respect to Pr(h)(t), at an aggregator level as follows: 

DEV (h+1)
ijn

(
Pr(h)(t)

)
= argmin

DEV
ijn ∈D EV

∑

t∈ℑ

[
ζijn.

(
DEV,disch

ijn (t)+ bijn(t).DEV ∗
ijn (t)

]

(32)    

5 Each aggregator sends the charging requirement decisions of 
DEV (h+1)

ijn to its attached microgrid. 
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6 Each microgrid reports its total demand (EVs and non-EVs), and 
generation level as well as its committed power exchange with 
the system operator. 

7 Based on the signal from the system operator, the microgrid up-
dates its power production price (that includes any energy pur-
chases from the upstream grid) as follows: 

C(h+1)
ij (t) =

∑

J∈Ji

DB ∗(h+1)
ij (t).

[
C′

ij

]
+ωij(t) (33)    

8 Each microgrid updates the pricing signal with respect to its 
instantaneous inverse-demand curve and operational status as 
follows: 

b(h+1)
ijn (t) =

∑

j∈Ji

∑

n∈Nt
ijn

DEV ∗(h+1)
ijn (t).

[
b′

ijn

]
+ κij(t) (34)    

9 The microgrid broadcasts the charging prices per vehicle, based 
on the EV scheduling at aggregator j, as follows: 

Pr(h+1)(t) = C(h+1)
ij (t) + b(h+1)

ijn (t) (35)    

10 Update ϵ, as follows: 

ϵ =
∑

j∈Ji

‖ Pr(h+1) − Pr(h) ‖ (36)    

11 Update h = h+ 1, if needed, 

3.2. Mathematical formulation of the upper-level based on the stackelberg 
model 

Considering an oligopolistic energy market with a system operator 
that oversees a collection of microgrids, each microgrid has its genera-
tion units and has the capability of exchanging power (selling or 
receiving) with other interconnected microgrids. Let us assume that 
each microgrid has G generation units such that g ∈ G, with their mar-
ginal cost production at microgrid i is represented as Cg

i in $/MWh with 
generation capacity xg

i in MWh. The primal variables in the quadratic 
formulation, Ξ, are the output of generating units, the total demand, and 
the net energy exchange at microgrid i; Ξ = {xg

i (t),Di(t),L i(t)}. 
One of the most efficient methodologies to solve a dual problem is 

the Wolfe dual. Let us consider a general maximization function 
Maxx[g(x)↿Z(x) ≤ 0], where x ∈ Rn, g : Rn→R, Z : Rn→Rm. The convex 
function, Z, and concave function g are assumed to be continuously 
differentiable. Let us introduce the Lagrangian function, L(x, λ) = g(x) −
λTZ(x), where the Lagrange multiplier λ ∈ Rm. The Wolfe dual could be 
expressed as Minx,λ{L(x, λ)↿∇xL(x, λ) = 0, λ ≥ 0}, with ∇xL(x, λ) as the 
gradient values for x. It is worth mentioning that a strong duality exists 
between the Wolfe and primal values [16]. Given that an optimal so-
lution has been reached, x, and the primal satisfied the slater condition, 
then there exists λ s.t. g(x) = L(x, λ) that represent the optimal solution 
for the Wolfe dual problem. The dual Wolfe of the upper-level follower is 
formulated as follows: 

F =
∑10

f=1
f (37)  

Where   

The objective function, F1, intends to maximize the social welfare of 
the consumers. At a timeslot t, the first part of the objective function 
sums the integral of the area covered under the IDC curve, which is 
subtracted by the second part which represents the energy generation 
costs at microgrid i level. Γi represents the cumulative capacity in MW in 
the inverse-demand curve, Di represents the total demand at microgrid i 
that include, at this level of the optimization problem, both the EVs and 
non-EVs loads. 

F2 =
∑

i,g∈Gi,t

Yg
i (t+ h′).[xg

i (t+ h′) − X
g
i ].Δ (39) 

The objective function (39) represents the net summations of ca-
pacity scarcity exchange on microgrid i during a timeslot t. Here, 
Yg

i represents the scarcity cost of unit g in microgrid i, which is the 
marginal opportunity cost imposed on future generations on the unit. 

F3 =
∑

s,t
λ+s (t+ h′).

[
∑

i
Ys,i.L i(t+ h′) − Zs

]

.Δ (40)  

F4 =
∑

s,t
λ−s (t+ h′).

[

−
∑

i
Ys,i.L i(t + h′) − Zs

]

.Δ (41)  

Here, Ys,i is a matrix representation of the reciprocal of the grid’s 
reactance between microgrids i and j. It is worth mentioning that in case 
of a power transfer between the microgrids, the column that represents 
the supplier microgrid is filled with zero entries to represent the node as 
a sink bus. Furthermore, matrix Ys,iis multiplied by either a positive or 
negative sign in a way that defines the direction of the power flow, with 
subscript s representing the flow between microgrids (i,j), while the 
subscript i indicates such flow is seen as either positive or negative from 
the ith microgrid. On the other hand, L i is a variable that represents the 
net energy mass balance of receiving and delivering power at the 
microgrid during a timeslot t. Its multiplication of matrix Ys,i indicates 
the upper and lower limits on the transmission line between microgrids 
i and j. Finally, Zs represents the MW capacity limit of the transmission 
line between any two microgrids in the system. 

F5 =
∑

i∈I

∑

t∈I

Ci(t+ l).

[

L i(t + h′) −
∑

l,g∈Gl,t

xg
li(t+ h′)+Di(t + h′)

]

.Δ (42)  

F6 =
∑

t∈I

φi(t+ h′).
[

−
∑

i∈I
L i(t+ h′)

]

.Δ (43) 

The objective functions (42) and (43) quantify the total marginal 
price of each microgrid as a result of energy transmission charges be-
tween different microgrids. Specifically, the microgrid’s locational 
marginal price Ci, is composed of both the system price φi because of 
generating or purchasing/selling power, and wheeling charge, ωi(t) that 
represents the charges accumulated for utilizing the network to transfer 
power when the grid is congested. Such charges could be represented as 
follows: 

ωi(t) = Ci(t) − φi(t) (44) 

The objective function (45) is formulated to regulate the carbon 
emission in the system, as follows: 

F7 = pco

[
∑

l,i,g∈Gl,i,t

Gco
li .x

g
li.Δ − G

]

(45) 

F1 =
∑

i∈I

∑

t∈I

[

Ci(t+ h′).Di(t+ h′) −
Ci(t + l)

2Γi (t + l)
.

[

Di(t + h′)2
+
∑

i∈I

∑

g∈G
xg

i (t + h′)2

]

.Δ −
∑

i,g∈Gi,t

Cg
i (t+ h′).xg

i (t+ h′).Δ (38)   
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Where pco represents the CO2 permit price that each microgrid must pay 
with respect to the level of emissions from its generating units. 
Gco

li represents the rate of CO2 emission from microgrid i during timeslot 
t, subscript l refers to the system operator as a leader, G is the emission’s 
cap level, established by the system’s operator with respect to the 
operational status of the system. Transfer of MW between microgrids 
i and m affect directly the linear inverse-demand curve at both micro-
grids. Therefore, the elasticity price as a result of changes in both 
microgrids’ x-axis levels is described as follows: 

F8 =
∑

m,i,g∈Gm,i,t

E mig(t+ l).( − xg
mi(t+ h′)).Δ (46)  

Where 

εmi =
±Γ′
Γ
±C′
C

(47)  

F9 = pREP

[
∑

i∈I

∑

q∈Qi

xq
i (t).Δ − Ω

[
∑

i∈I

∑

g∈Gi

xg
i (t).Δ

]]

(48) 

The objective function (48) represents the RPS requirement per 
microgrid at the interconnected system. Furthermore, an RPS level of 
the total generation sources is assumed to be mandated by the local 
authority so that a specific percentage, Ω, of the total generation must be 
incorporated from generators q that belong to a set of renewable energy 
sources Qi. pREP represents the monetary obligations per microgrid, with 
its signs as an indication of whether the microgrid is selling (positive) or 
receiving (negative) energy from renewable energy sources from a 
nearby microgrid. The emission cost is neglected in the case of RPS 
certification trading since renewable sources do not emit any CO2 in the 
generation process. Finally, the availability of energy to provide to 
nearby stations is represented as the capacity level each microgrid has 
after the implementation of the optimization problem in the previous 
timeslot, as follows: 

F10 =
∑

i∈I

∑

t∈I

A i(t+ h′).Δ (49) 

The objective function (37) is minimized with respect to the vari-
ables in Ξ = {xg

i (t),Di(t),L i(t)}, and Ψ = {Yg
i (t),λ

+
s (t),λ

−
s (t),wi(t),ψ i(t),ρ,

εg
i (t),Ωi(t)}. The gradients of the lagrangian drive the following condi-

tions with respect to Ξ: 
[

−
C′

i(t)
Γ′

i(t)

∑
xi(t) − Cg

i (t) − Yg
i (t)+wi(t) − ρGco2,g

i (t)+ εg
i (t)

]

Δt = 0 (50)  

[

Ci(t) −
C′

i(t)
Γ′

i(t)
Di(t) − wi(t)+Ωi(t)

]

Δt = 0 (51)  

[

−
∑

s

(
λ+s (t) − λ−s (t)

)
Ys,i − wi(t) +ψi(t)

]

Δt = 0 (52)  

Yg
i (t) ≥ 0 (53)  

λ+
s (t) ≥ 0 (54)  

λ−
s (t) ≥ 0 (55)  

ρ ≥ 0 (56)  

εg
i (t) ≥ 0 (57)  

Ωi(t) ≥ 0 (58)  

∀ s ∈ S, g ∈ Gi, i ∈ I, t ∈ T 

It is worth mentioning that nonnegativity constraints are placed on 
the variables that are associated with the inequality constraints, {Yg

i (t),
λ+s (t), λ−s (t), ρ, εg

i (t), Ωi(t)}; otherwise, variables in the quadratic repre-
sentation are non-restricted. Δt is multiplied by the left-hand side to 
account for the hourly value of each dual variable. 

The upper level that represents the system’s operator at the first layer 
could be modeled similarly as follows: 
∑

i∈I

∑

g∈Gl

[
Ci(t+ h′) − Cg

li(t+ h′) − pcoGco
li −

]
xg

li(t+ h′).Δ (59)  

R = R 1 − [R 2 +R 3 +R 4 +R 5 +R 6] (60)  

R 1 =
∑

i,t

[

C′
i(t+ h′).Di(t+ h′) −

C′
i(t + h′)

Γi(t + h′)

(
Di(t + l)2)

]

.Δ (61)  

R 2 =
∑

m,i,g∈Gmi,t

[
C′

i(t + h′)
Γi(t + h′).

∑

(g′,g)∈Gmi

xg′
mi(t+ h′).xg

mi(t+ l)

]

.Δ (62)  

R 3 =
∑

m,i,g∈Gmi,t

Cg
li(t+ h′).xg

li(t+ h′).Δ (63)  

R 4 =
∑

s,t

[
λ+s (t+ h′)+ λ−s (t + h′)

]
.Zs.Δ − pcoG (64)  

R 5 =
∑

m,i,g∈Gmi,t

Yg
mi(t+ h′).Xg

mi.Δ (65)  

R 6 = pREP

[
∑

q∈Ql

xq
li(t).Δ − Ω

[
∑

g∈Gl

xg
li(t).Δ

]]

(66) 

We linearize the complimentary conditions found in the previous 
equations via disjunctive constraints [17], as follows: 

0 ≤ − [xg
i (t) − Xg

i (t)]Δt ≤ M1rg,1
i (t) (67)  

0 ≤ Yg
i (t) ≤ M1( 1 − rg,1

i (t)
)

(68)  

0 ≤ −

[

−
∑

i
Ys,iL i(t) − Zs

]

Δt ≤ M2r2
s (t) (69)  

0 ≤ λ+s (t) ≤ M2( 1 − r2
s (t)

)
(70)  

0 ≤ λ−s (t) ≤ M3( 1 − r3
s (t)

)
(71)  

0 ≤ −
[
− Ys,iL i(t) − Zs

]
Δt ≤ M3r3

s (t) (72)  

0 ≤ −

[
∑

g,i∈Gi,t
Gco2,g

i xg
i (t)Δt − G

]

≤ M4r4 (73)  

0 ≤ ρ ≤ M4( 1 − r4) (74)  

0 ≤ xg
i (t)Δt ≤ M5( 1 − rg,5

i (t)
)

(75)  

0 ≤ Di(t)Δt ≤ M6rg,6
i (t) (76)  

0 ≤ Ωi(t) ≤ M6( 1 − rg,6
i (t)

)
(77)  

0 ≤ −
[
− Ys,iL i(t) − Zs

]
Δt ≤ M3r3

s (t) (78)  

0 ≤ −

[
∑

g,i∈Gi,t
Gco2,g

i xg
i (t)Δt − G

]

≤ M4r4 (79)  

rg,1
i (t) ∈ {0, 1} (80) 
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r2
s (t) ∈ {0, 1} (81)  

r3
s (t) ∈ {0, 1} (82)  

r4 ∈ {0, 1} (83)  

rg,5
i (t) ∈ {0, 1} (84)  

rg,6
i (t) ∈ {0, 1} (85)  

∀ s ∈ S, g ∈ Gi, i ∈ I, t ∈ T 

The set Π = {rg,1
i (t), r2

s (t), r3
s (t), r4, rg,5

i (t), rg,6
i (t)} represents the binary 

variables in this work, associated with the big-M method constants {M1,

M2,M3,M4,M5,M6}. The system operator projects revenue from selling 
energy to the downstream level of microgrids minus the operational 
costs. Such operational costs include the costs of the CO2 and RPS per-
mits imposed by state or local regulators. To obtain an optimal solution 
to the microgrid’s layer, variables of the system operator’s layer need to 
be fixed. This allows the representation of the optimal primal and dual 
solutions at the microgrid level as functions of xg

i (t + 1). The objective 
function given in Eq. (60) is now a convex MIQP function, with linear 
equalities and inequalities constraints. It could be solved using a com-
mercial optimization toolbox such as CPLEX and Gurobi. 

4. Case study 

In order to test the effectiveness of the proposed tri-level hierarchical 
control of energy management considering large-scale integration of 
EVs, case studies were carried out on the modified IEEE 123 bus system. 
The case studies considered the optimal decomposition of this test sys-
tem into three partitions, as discussed in [18]. This work assumes that a 

microgrid operates each partition. Thus, the system operator is dealing 
with three microgrids, each has four charging stations within its 
jurisdiction. 

4.1. Description of the test system 

Fig. 3 presents an illustration of the modified IEEE 123 bus system 
with the incorporation of three microgrids. The system information is 
given in Table 1. The resistive and inductive parameters of the lines are 
set to be 0.05 and 0.11 per unit, while the system’s base MVA is 100 
[19]. The system includes ten PV units with different capacities, five 
250 kW gas-fired microturbines, and five 250 kW diesel-fired micro-
turbines. The generation units’ marginal and emission costs are adopted 
from [20] and are labeled in Table 1. The total load on the system is 3.8 
MW. As stated earlier, when a microgrid reaches its maximum genera-
tion capability, it can purchase power from either the upstream grid, 
which is run by the system operator, or from its neighboring microgrids, 
based on information supplied by the system operator. The wheeling 
charge is assumed to be set as 4 $/MWh for low voltage access to the 

TR Tap Changer (OLTC) Capacitor Bank (CB) Charging Sta�on (EV) Solar (PV)

Microgrid 1

Microgrid 2

Microgrid 3

Micro Diesel Turbine (MDT) Micro Gas Turbine (MGT)D G

D

D

D

D
D

D

G

G

G

G

G

G

G

Fig. 3. The modified IEEE 123 test system with the energy grid information.  

Table 1 
System generation-related parameters.  

Unit No of Gen 
Units 

Capacity Marginal 
Cost 

Capacity 
Factor 

CO2 emission 
rate 

MGT 5 250 kW 0.199 0.72 02 kg.Cos 
/KWh 

MDT 5 250 kW 0 125 0.72 0.28 
PV 10 75 kW (4) 0 0.28 0 

100 kW 
(4) 
125 kW 
(3)  
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transmission system, and is adopted from the California Independent 
System Operator (CAISO) [21]. 

4.2. Simulation results 

The results of the proposed tri-level structure show that the proposed 
system can efficiently coordinate the energy management of the electric 
grid, taking into consideration the large-scale integration of EVs. The 
arrival and departure of the EVs into the charging station are beyond the 
scope of this work; therefore, we adopt them based on the well- 
established studies in [22,23]. 

As mentioned earlier, the system operator acts as a leader in the 
Stackelberg hierarchy, while the microgrid operators act as followers. 
The emission cap is set in this work at 2500 kt. The solutions were ob-
tained based on solving the MIQP function. To show the proposed 
hierarchy’s effectiveness, we compare the obtained results versus the 
normalized results of the previously published energy management 
framework. Table 2 shows the effectiveness of the proposed framework 
in this work. As noted, the production output is less than the perfect 
competition (PC) [24] and Cournot-based [25] frameworks, since the 
latter surpasses the generation levels to increase their revenue margins. 
Nevertheless, the results show that the operational revenue under our 
proposed methodology is the highest, indicating an optimal combina-
tion of the generation resources and power exchange to reduce CO2 
emissions costs. Furthermore, it is noted that the proposed hierarchy 
successfully minimizes the price of CO2 permits since the operator al-
lows the exchange of energy to reduce dependence on diesel-fired gen-
eration units that emit a higher level of CO2. 

As results shown in Fig. 4 indicate, MG1 and MG2, which integrate 
four diesel units on their premises, buy energy from MG3, request 

energy discharge from EV consumers, and request energy support from 
the upstream network to support a certain amount of power rather than 
generating them from their diesel-fired generation units. As a result of 
the decentralized charging algorithm, the energy prices successfully 
influence the EVs owners to postpone their charging. It is worth 
mentioning that the proposed hierarchy, driven by the need to meet a 
certain RPS percentage per microgrid, allows more energy exchange. 
Indeed, and due to the carbon cap-and-trade implementation, it would 
be more cost-efficient for MG1 to buy energy from MG3 than to produce 
it from its diesel-fired microturbines. 

As shown in Table 3, the proposed hierarchy successfully led to 
reduced energy pricing throughout the day. It is worth mentioning that 
prices vary per microgrid as a result of the variety of generation levels of 
its distributed generators. It is noted from the presented results in 
Table 3 that as a result of the energy exchange that both MG1 and MG2 
perform during peak demand hours, their peak energy prices are slightly 
higher than those at MG3. This is contributed mainly to the wheeling 
charges illustrated in (44) in this work. The wheeling charges have no 
effect in the off-peak period since the level of congestion on the lines is 
significantly lower than during peak demand hours. Additionally, it is 
worth mentioning that if the modified test system has higher congestion 
capacity, then the wheeling charges would have been significantly 
diminished during peak demand hours, and accordingly the energy 
prices during these time frames. Also, it is widely evident that the 
Cournot model would yield higher energy prices since this type of en-
ergy market would lead to lower energy generation output and ex-
changes to drive the energy prices upward and obtain higher profits 
accordingly. This contributes to the proposed model surpassing the 
Cournot model in terms of social welfare to average consumers. 

Table 2 
Comparisons between the proposed framework vs. benchmarks.   

PC [24] Cournot [25] Proposed work 
Generation Output (MWh) 

System operator 84.21 87.25 85.45 
MG1 19.52 17.43 17.92 
MG2 16.35 15.4 16.12 
MG3 20.83 20.95 21.95 
Total 140.91 141.03 141.44 
CO2 emissions [kt] 2500 2500 2500 
Permit price [$/kt] 1500 890 1000  

Fig. 4. System’s operation before (upper) and after (lower) the implementation of the proposed framework.  

Table 3 
Peak and off-peak energy prices for the benchmark simulations.   

PC Co Ours  

Peak Off- 
peak 

Peak Off- 
peak 

Peak Off-peak 

Energy price ($/KWh) 

System 
operator 

0.214 0.152 0.191 0.142 0.165 0.091 

MGI 0.192 0.154 0.11 0.155 0.16 0 105 
MG2 0.201 0.145 0.178 0.147 0.171 0.11 
MG3 0.188 0.134 0 169 0.125 0 147 0.082  
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Furthermore, it shows the effectiveness of shifting the EVs loads into off- 
peak demands following the implementation of the proposed strategy. 
Results in Fig. 5 show the impact of the updated aggregated charging 
needs of the EVs owners as a result of implementing the proposed 
framework. It illustrates the charging loads after the implementation of 
the control strategy that dispatches accurate energy price signals based 
on the network condition considering the inelasticity of the base de-
mand. Specifically, implementation shows that both power transformers 
at MG1 and MG2 violate their capacity limitations. Additionally, Fig. 6 
shows the impact of the proposed strategy on both energy and power 
requests on a station’s aggregator under MG2. Specifically, each 
aggregator has an upper and lower limit dictated by its attached 
microgrid. During the peak hours, and by implementing the discharging 
price offer illustrated in Eq. (12), the aggregator’s limit moves up in 

values, as positive values in the figure indicate energy supply to MG2 
during the peak demand hours windows. Accordingly, incorporating the 
TRs capacity into the pricing scheme has forced a good amount of EVs to 
postpone their vehicles charging which successfully led to the flattening 
of the charging curve. 

5. Conclusion 

This work proposes a tri-level, hierarchical energy management co-
ordination mechanism that optimally manages the electric network 
considering large-scale integration of the EVs. This framework’s central 
concept is based on establishing energy price signals by following the 
timely updates of the inverse-demand curve. This work realizes that 
utilizing the inverse-demand function is the best strategy to produce 

Fig. 5. System overloading conditions before and after the implementation of the proposed strategy.  

Fig. 6. Upper and lower limits of aggregator A of microgrid no.1.  
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accurate and supply-influenced energy prices. Such a claim is valid since 
its price estimation accounts for any slight modification in the supply 
quantity (system’s energy generation) and demand of products (con-
sumers’ utilization of energy). That is to say; the tri-level energy opti-
mization problem took into account various operational and policy 
constraints that are imposed on the real-life operation of the system. 
Such restrictions include line and transformer overloading, RPS 
requirement, carbon emission requirement, and EVs charging and dis-
charging limitations due to the system’s condition. The formulation of 
the proposed framework was achieved by MIQP representation, and KKT 
and big M-method approximations were performed to ensure accurate 
implementation of the electrical energy system’s constraints, where 
there is a need to account for its non-linearity nature. The IEEE 123 bus 
system was used to test the proposed tri-level framework. Furthermore, 
this work assumed three microgrid entities directly connected to a sys-
tem operator at its upper-level layer and charging stations run by 
aggregators at its lower-level layer. The reason behind such dissection 
lies in the results obtained in [18], where optimal decomposition of the 
system into partitions based on their voltage, active and reactive power 
limits was performed. Finally, results show that successful imple-
mentation of the proposed framework led to influencing the charging 
behavior of hundreds of the EVs owners to delay their charging re-
quirements due to the dynamic energy price signals that are issued based 
on the system’s timely operation. Additionally, the results show the 
optimal energy exchange between different microgrids to support their 
overall operation and reduce the overall cost incurred from their gen-
eration units. 
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